[发明专利]基于数据驱动的机械臂轨迹跟踪控制方法在审

专利信息
申请号: 202011205828.2 申请日: 2020-11-02
公开(公告)号: CN112318511A 公开(公告)日: 2021-02-05
发明(设计)人: 贾庆轩;杨名硕 申请(专利权)人: 北京邮电大学
主分类号: B25J9/16 分类号: B25J9/16
代理公司: 暂无信息 代理人: 暂无信息
地址: 100876 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 数据 驱动 机械 轨迹 跟踪 控制 方法
【说明书】:

本发明专利提供了一种基于数据驱动的机械臂轨迹跟踪控制方法,属于工业机器人控制领域。该方法将子空间辨识和模型预测控制理论相结合,子空间辨识不断为预测控制更新模型,再利用模型预测控制方法实现机械臂的轨迹跟踪。与现有技术相比,本发明的轨迹跟踪控制方法是无模型控制方法,可以直接利用被控系统的输入输出数据以及未来的输入量实现对系统的控制,不需要传统的参数模型,从而避免了传统基于模型控制方法中第一步建立动力学模型的复杂过程,同时本发明采用了滚动优化策略,即在线反复进行优化计算,滚动实施,可以使模型失配、畸变、扰动等引起的不确定性得到及时弥补,保证系统的跟随控制性能最优。

技术领域

本发明涉及工业机器人控制领域,具体而言是一种子空间辨识和模型预测控制相结合的控制方法。

背景技术

预测控制经过几十年的发展与应用,从线性时不变预测控制发展出应用非线性、时变系统的多种新的预测控制技术,成为控制工程界的一个研究热点。预测控制是一种基于模型的控制算法,在过程模型中可以得到预测矩阵,预测矩阵通常用来预测未来输出。状态空间模型是过程模型中一种常用的模型,状态空间模型不仅能够反映系统的外部关系,更能揭示系统的内部特性。基于状态空间模型的控制方法既适用于单输入单输出(SISO)系统,又适用于多输入多输出(MIMO)系统,既可以处理定常系统又可处理时变系统。利用状态空间理论方法来分析和设计系统,提高了设计控制系统的层次。但是,人们试图将状态空间控制方法应用到工业过程时,发现在理论与实践之间依然存在着较大的差距。主要原因在于人们无法获取工业过程准确的状态空间模型,而基于数据驱动的控制方法可以很好地解决这一问题。

基于数据驱动的控制方法将子空间辨识与预测控制相结合,子空间辨识方法自从提出以来就获得了广泛的关注并得到了迅速发展,在理论研究的基础上,子空间辨识方法的应用也取得了诸多成果。例如,在过程工业如石油、化工、电力、造纸等行业,在机械工业如机械臂、振动分析等,以及在数据融合、军事等领域,子空间辨识方法都得到了广泛的应用。子空间辨识方法是一种基于数据驱动的方法,最典型特征是适用于多输入多输出系统的建模。随着对子空间辨识算法研究的不断开展,人们可以清楚地看到,子空间方法直接基于所得到的输入输出数据,不需要模型机理结构知识,只需要事先确定系统阶次,通过计算直接得到可以表示预测输出的子空间预估器模型。而且,由于子空间方法在辨识中利用了线性代数工具,与传统的辨识方法相比,不需要非线性的迭代及搜索过程,简化了很多计算量。因此基于数据驱动的控制方法在机器人的应用领域上具有广泛前景。

发明内容

本发明的目的在于克服现有技术的不足,提出一种基于数据驱动的机械臂轨迹跟踪控制方法,该方法不需要传统的动参数模型,可以直接利用被控系统的输入输出数据以及未来的输入量就可以实现对系统的优化控制。

本发明用以下方案实现:

一种利用基于数据驱动的机械臂轨迹跟踪控制方法,将子空间辨识和模型预测控制理论相结合,子空间辨识不断为预测控制更新模型,再利用模型预测控制方法实现机械臂的轨迹跟踪。每个采样T时间,子空间对以往的输出数据进行辨识,将更新后的模型传递到预测控制器中,预测控制器求解系统最优控制问题,在随后的采样间隔[T,T+1)内应用生成的最优输入信号控制机械臂沿跟踪轨迹运动,在下一个时刻T+1,控制系统基于上个状态的测量值重复上述操作。

本发明涉及的方法包括以下步骤:

第一步:采用状态空间模型来描述机械臂控制系统的模型,其中:x(t)为系统的过程状态,y(t)位系统的输出测量值,u(t)为系统的输入测量值,为状态空间方程的系数矩阵。对状态空间模型离散化,得到离散状态模型:x(k+1)=Ax(k)+Bu(k),y(k)=Cx(k)+Du(k)。

加入带有增量形式的目标函数,从而减小系统的稳态误差,提高控制效果,得到新的状态空间模型Δx(k+1)=AΔx(k)+BΔu(k),Δy(k)=CΔx(k)+DΔu(k)。

其中Δ也被称为差分算子。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京邮电大学,未经北京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202011205828.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top