[发明专利]一种基于机翼后缘通气孔的跨声速抖振控制结构在审
申请号: | 202110111122.8 | 申请日: | 2021-01-27 |
公开(公告)号: | CN112849388A | 公开(公告)日: | 2021-05-28 |
发明(设计)人: | 雷娟棉;刘昱希;牛健平;吴志翔 | 申请(专利权)人: | 北京理工大学 |
主分类号: | B64C3/36 | 分类号: | B64C3/36 |
代理公司: | 北京理工大学专利中心 11120 | 代理人: | 廖辉 |
地址: | 100081 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 机翼 后缘 通气孔 声速 控制 结构 | ||
本发明公开了一种基于机翼后缘通气孔的跨声速抖振控制结构,属于飞行器流动控制技术领域。抖振控制结构为设置在机翼后缘内部的通气孔,通气孔的一端与翼型上表面相通,另一端与翼型钝后缘相通;通气孔的孔径与翼型后缘厚度为同一量级。本发明能够在控制抖振的同时,减少对原机翼升阻特性的影响。
技术领域
本发明属于飞行器流动控制技术领域,具体涉及一种基于机翼后缘通气孔的跨声速抖振控制结构。
背景技术
飞行器在跨声速飞行时,激波-边界层干扰可能造成流动分离以及激波周期性的自激振荡,引起跨声速抖振。抖振时往往产生较大的非定常载荷,对飞行品质和结构寿命造成不利影响。因此需要对流动进行控制,抑制跨声速抖振。
Mabey等人针对对称翼型(机翼截面)的激波振荡提出了一种抖振通气孔的概念,如附图1所示,通过在激波下游的翼型上、下表面穿孔并从内部连通,使得翼型上、下表面的压力实现传导,从而在零攻角下消除或减弱激波振荡。
Jiang等人在Mabey研究成果的基础上进行了发展,利用贯通翼型上、下表面的抖振通气孔,将超临界翼型上表面激波后的分离流与翼型后缘分离区隔开,阻碍了两者的融合和相互作用,从而抑制抖振。
对于Mabey和Jiang等人所研究的抖振通气孔流动控制技术,虽然能够有效减弱翼型和机翼绕流中的激波振荡,抑制跨声速抖振,但同时也对原翼型的气动特性产生了较大影响。根据数值模拟结果,在完全消除抖振载荷时,升力系数损失可达10%以上。这对于十分重视升力特性的相关飞行器设计,如民航客机来说,是难以接受的。
发明内容
有鉴于此,本发明提供了一种基于机翼后缘通气孔的跨声速抖振控制结构,能够在控制抖振的同时,减少对原机翼升阻特性的影响。
一种基于机翼后缘通气孔的跨声速抖振控制结构,所述抖振控制结构为设置在机翼后缘内部的通气孔,所述通气孔的一端与翼型上表面相通,另一端与翼型钝后缘相通;所述通气孔的孔径与翼型后缘厚度为同一量级。
进一步地,所述通气孔设置在机翼翼型内的中后部。
进一步地,所述通气孔在机翼后缘内在走向与翼型上表面的弧度一致。
进一步地,所述通气孔的截面形状为圆形或方形。
进一步地,所述通气孔对于三维机翼表现为通槽的形式。
有益效果:
1、本发明的抖振控制结构采用了连通翼后缘和翼上表面的通气孔,利用翼后缘与翼上表面的压差,在通气孔中产生从翼后缘流向上表面某处的射流,该射流能够阻碍激波脚分离泡与后缘分离区的融合,从而抑制跨声速抖振。
2、本发明的通气孔的入口位于翼型钝后缘处,且孔直径与翼型后缘厚度为同一量级,因此对翼型下表面高压的影响较小,从而能够减小流动控制对翼型造成的升力损失。
附图说明
图1为现有技术中抖振通气孔在翼型上的结构示意图;
图2为跨声速条件下翼型表面时均压力分布曲线图;
图3为本发明跨声速抖振控制结构示意图;
图4为后缘通气孔出口、入口处的局部放大图;
图5为翼型升力系数-时间曲线对比图。
具体实施方式
下面结合附图并举实施例,对本发明进行详细描述。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京理工大学,未经北京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110111122.8/2.html,转载请声明来源钻瓜专利网。