[发明专利]一种Fe3 有效
申请号: | 202110470584.9 | 申请日: | 2021-04-29 |
公开(公告)号: | CN113328160B | 公开(公告)日: | 2022-05-24 |
发明(设计)人: | 刘葵;史莹;潘齐常;郑锋华;胡思江;黄有国 | 申请(专利权)人: | 广西师范大学 |
主分类号: | H01M10/54 | 分类号: | H01M10/54;H01M4/36;H01M4/52;H01M4/583;H01M10/0525 |
代理公司: | 桂林市华杰专利商标事务所有限责任公司 45112 | 代理人: | 杨雪梅 |
地址: | 541004 广西壮*** | 国省代码: | 广西;45 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 fe base sub | ||
本发明公开了一种Fe3O4/FeO/C复合材料及其制备方法和应用。采用阴离子交换树脂分离废旧磷酸铁锂电池正极材料盐酸浸出液中的铁和锂,其中锂留在流出液中,用于制备高纯锂盐,铁富集在树脂中。将吸附铁至饱和的树脂废料在400‑1000℃的温度下煅烧,制备得到Fe3O4/FeO/C复合材料,复合材料可用于锂离子电池的负极材料。本发明方法,复合材料制备过程无需额外添加碳源和金属盐,树脂来源丰富、价格低廉,材料制备过程简单、流程短、制备的复合材料电化学性能性能优越。本发明方法实现废旧磷酸铁锂电池中铁和锂的高效回收,以及铁和树脂的二次利用,具有显著的经济效益。
技术领域
本发明涉及锂离子电池的回收利用及电池负极材料的制备技术领域,具体是一种Fe3O4/FeO/C复合材料及其制备方法和应用。
背景技术
磷酸铁锂电池具有能量密度高、循环寿命长等优点而被广泛应用于家用电器、便携式电子设备、电动汽车等领域。但磷酸铁锂电池都有一定的使用寿命,通常约为3-5年。随着锂离子电池的市场需求和销售量的不断增加,大量的废旧磷酸铁锂电池随之产生。废旧磷酸铁锂电池中的电解液和铜等重金属物质泄露后会渗入垃圾、土壤中,会对环境造成严重污染。而废旧磷酸铁锂电池正极材料中含有的铁、锂等有价金属属于紧缺资源,我国储藏量并不丰富,仍需大量进口。因此,从环境保护和资源循环利用的角度考虑,需对磷酸铁锂电池加以回收利用。
目前,石墨碳是锂离子电池的主要负极材料。但是,随着对电池容量及能量密度的要求越来越高,碳材料较低的理论比容量(372mAh/g)以及在充放电过程中较大的不可逆比容量限制了高性能锂离子电池的发展。科学家们不断尝试去研究和开发新型负极材料以提高负极材料的容量、倍率性能和使用寿命。
金属氧化物是一种具有高容量的负极材料,已开发的金属氧化物负极材料主要有铁氧化物、钴氧化物和锡氧化物等,其中铁氧化物的理论容量较高( 800~1000 mAh·g-1) ,其原料资源丰富、价格便宜、对环境无污染。但是,金属氧化物类材料不导电,充放电过程体积膨胀效应大,限制了该类材料在负极上的应用。颗粒纳米化、表面碳包覆或碳复合是解决此类问题的有效策略,可以提高材料的导电性,并有效抑制金属氧化物的体积膨胀。然而,目前已报道的纳米化碳材料、表面碳包覆或碳复合的金属氧化物材料的合成方法,存在工艺复杂的缺陷,通常合成原料需要使用新的碳源(而不是价格便宜的石墨碳),合成过程中碳源热处理过程会生成一些污染环境的气体,合成过程需要添加较为昂贵的金属盐如钴、镍盐等,这些都使合成成本大幅增加。
发明内容
本发明针对现有技术的不足, 提供一种简单的回收废旧磷酸铁锂正极材料中铁和锂的方法,并提供一种原料丰富、无污染、高比容量、高倍率性能、长循环稳定性的、以吸附铁的离子交换树脂废料合成的Fe3O4/FeO/C复合材料的制备方法,该材料可以用作锂离子电池的负极材料。
实现本发明的技术方案如下:
一种Fe3O4/FeO/C复合材料的制备方法,其特征在于,包括以下步骤:
(1)对废旧磷酸铁锂电池进行拆解,取出正极片,分离正极片中铝箔与正极材料,将收集的正极材料用盐酸溶液浸出,得到含锂、铁的盐酸浸出液;
(2)将阴离子交换树脂用10%-40%氯化钠溶液或盐酸溶液进行预处理,使之转化为Cl-型树脂,然后充填到树脂柱中;
(3)将步骤(1)得到的含锂、铁的盐酸浸出液从树脂柱顶端连续送入,在树脂柱底端收集流出液,当检测到流出液中只有锂而没有铁时,收集这部分流出液,作为制备碳酸锂或氢氧化锂的原料;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广西师范大学,未经广西师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110470584.9/2.html,转载请声明来源钻瓜专利网。
- 上一篇:高效保真的H·265视频信息高容量隐藏法
- 下一篇:电子烟夹紧自锁装置
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法