[发明专利]基于神经网络的动车组中继阀气体泄漏故障预测方法在审
申请号: | 202110578733.3 | 申请日: | 2021-05-26 |
公开(公告)号: | CN113378896A | 公开(公告)日: | 2021-09-10 |
发明(设计)人: | 彭立强;秦志英;李春华;孙振忠 | 申请(专利权)人: | 河北科技大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/02;G06Q10/04;G06F17/16 |
代理公司: | 河北盟邦知识产权代理事务所(普通合伙) 13153 | 代理人: | 陈建民 |
地址: | 050018 *** | 国省代码: | 河北;13 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 神经网络 车组 中继 气体 泄漏 故障 预测 方法 | ||
本发明涉及一种基于神经网络的动车组中继阀气体泄漏故障预测方法,根据中继阀在运行中的实时特征参数,以及输入输出的气压特性,比较中继阀正常与泄漏情况下的输出压力数据存在的差异,选择误差算法进行预测是否会泄漏检测,进而达到中继阀在泄漏气体达到上限或者气压值过高时,发出提前预警的效果。本发明提供了一套简明有效的检测方法,维护了制动系统的可靠性,可以使维护人员提前预知中继阀的健康状态,有效的做出维修措施,保障了行车安全。同时,提出了检测指导建议,为后期维修降低了经济成本。
技术领域:
本发明涉及一种气体泄漏故障预测方法领域,尤其涉及一种基于神经网络的动车组中继阀气体泄漏故障预测方法,属于故障预测技术领域。
背景技术:
中继阀作为动车组制动控制系统的关键部件,在长期运营过程中会由于供给阀组件、硫化圈密封件磨损等原因发生泄漏,造成中继阀性能下降,进而影响制动系统的状态。目前,针对中继阀的故障检测均为功能性检测,由于中继阀的调节特性,其轻微泄漏甚至中度泄漏大部分不影响其功能实现,直至中继阀发生重度泄漏并影响制动系统性能后才能被发现。
在中继阀工作时,预控的压力进入膜板的下腔室,从而推动活塞向上发生位移。而活塞向上推动阀杆,进而切断大气与输出的通行管道。然后打开输入到输出的通道,从输入口向输出口充气。而当输出压力到达一定的标准值后,阀杆推动活塞向下产生位移,并切断输入与输出口、输出与大气的通道,让各零部件处于平衡。如果预控的压力再次升高,则活塞继续向上移动,并重复之前的工序。而中继阀在不同的预控压力下会出现不同的误差。其主要原因在于膜板回弹力、活塞两侧的受力面积、密封压力、摩擦压力而影响。产生误差的长期表现就容易产生器件磨损、老化等问题,从而使中继阀内的气体发生泄漏,气压值变化不正常,严重影响动车的制动系统。但目前这种现象不能够即使的被工作人员发现,总是到达一定的磨损程度明显影响制动性能后,才会被工作人员所感知,可知如今市场急需这样一套故障预测的方法,来实现中继阀和制动系统的维护保养。
发明内容:
本发明的目的是提供基于神经网络的动车组中继阀气体泄漏故障预测方法。
本发明采用的技术方案是:基于神经网络的动车组中继阀气体泄漏故障预测方法,包括以下步骤:
步骤1:数据采集:采集时间连续P批训练数据Qp,0pP,P为大于0 的整数;每批训练数据由T个时刻中继阀第1至第N个进气口和第1至第M个出气口的气压组成;
步骤2:模型训练:采用神经网络预测特征参数,所述神经网络包括输入层、第一至第Z隐层和输出层,Z≥1;训练方法有以下具体步骤组成:
步骤2-1:初始化模型参数:设置训练次数计数器p=0;设置输入数据倍增因子r=1;设置输入层到第一隐层之间的权值矩阵V={vij}为随机数矩阵;设置第Z隐层到输出层之间的权值矩阵W={wjk}为随机数矩阵;设置模型目标精度EMIN;
步骤2-2:输入训练数据:p=p+1;输入训练数据Qp...Qp+r,训练数据Qp... Qp+r-1的进气口数据X=(x1、x2、···、xi、···、xn)T为输入层的输入向量,n=rNT,训练数据Qp+1...Qp+1出气口数据作为期望输出向量,l=rMT;
步骤2-3:V={vj},1≤j≤m,为输入层到第一隐层之间的权值向量,计算各隐层输入向量Yz=(yz1、yz2、···、yzj、···、yzm)T,zm为第z隐层输入向量的维数,1≤z≤Z:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河北科技大学,未经河北科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110578733.3/2.html,转载请声明来源钻瓜专利网。