[发明专利]电子签名识别方法、装置、设备及存储介质在审

专利信息
申请号: 202210983964.7 申请日: 2022-08-16
公开(公告)号: CN115410281A 公开(公告)日: 2022-11-29
发明(设计)人: 丁烨;邵明禹;廖清 申请(专利权)人: 东莞理工学院
主分类号: G06V40/30 分类号: G06V40/30;G06V10/82;G06N3/04;G06N3/08
代理公司: 广州三环专利商标代理有限公司 44202 代理人: 严静
地址: 523808 广东省*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 电子 签名 识别 方法 装置 设备 存储 介质
【说明书】:

本申请适用于计算机技术领域,公开了一种电子签名识别方法、装置、设备及存储介质,通过获取电子签名数据和随机变量,电子签名数据包括签名图像和运笔数据,并基于电子签名数据和随机变量,对预设的生成对抗网络进行训练,直至生成对抗网络达到预设收敛条件,得到第一签名识别模型,以及基于签名用户在每次签名场景中的待识别签名数据,对第一签名识别模型进行训练,得到训练完成的第二签名识别模型,最后利用第二签名识别模型中的目标判别器,对待识别签名图像进行识别,得到识别结果数据,从而利用主动学习机制和生成对抗网络结合的方式,采用实际签名场景下的签名数据对模型进行更新,提高模型的鲁棒性、准确度和识别效率。

技术领域

本申请涉及计算机技术领域,尤其涉及一种电子签名识别方法、装置、设备及存储介质。

背景技术

随着计算机技术的发展,电子签名识别被广泛应用于各种需要确定签名人身份的场景中,例如银行系统和电子合同等。为了防止数据泄露,当前签名识别技术通常围绕签名识别的安全性建立一整套安全机制,但是增加安全机制的同时也会导致签名识别难度提高,识别效率降低。同时当前签名识别技术需要获取签名人的多次签名数据用于模型训练,对训练样本的要求较高。

然而,对于日常生活中的签名场景,例如课堂签到和公司打卡签到等,其对安全性的要求并不高,更多的是追求识别效率和准确度。可见,当前签名识别技术不能很好的适用于各种场景。

发明内容

本申请提供了一种电子签名识别方法、装置、设备及存储介质,以解决当前电子签名识别技术无法很好的适用于各种场景的技术问题。

为了解决上述技术问题,第一方面,本申请实施例提供了一种电子签名识别方法,包括:

获取电子签名数据和随机变量,电子签名数据包括签名图像和运笔数据;

基于电子签名数据和随机变量,对预设的生成对抗网络进行训练,直至生成对抗网络达到预设收敛条件,得到第一签名识别模型;

基于签名用户在每次签名场景中的待识别签名数据,对第一签名识别模型进行训练,得到训练完成的第二签名识别模型;

利用第二签名识别模型中的目标判别器,对待识别签名图像进行识别,得到待识别签名图像对应的识别结果数据。

本申请通过获取电子签名数据和随机变量,电子签名数据包括签名图像和运笔数据,并基于电子签名数据和随机变量,对预设的生成对抗网络进行训练,直至生成对抗网络达到预设收敛条件,得到第一签名识别模型,以利用生成对抗网络提高签名识别模型的准确度,同时能够保证安全性;以及基于签名用户在每次签名场景中的待识别签名数据,对第一签名识别模型进行训练,得到训练完成的第二签名识别模型,以利用主动学习机制,采用实际签名场景下的签名数据对模型进行更新,提高模型的鲁棒性;最后,利用第二签名识别模型中的目标判别器,对待识别签名图像进行识别,得到待识别签名图像对应的识别结果数据,以只采用签名图像即可实现签名识别,提高实际签名场景下的识别效率。

作为优选,基于电子签名数据和随机变量,对预设的生成对抗网络进行训练,直至生成对抗网络达到预设收敛条件,得到第一签名识别模型,包括:

利用生成对抗网络中的第一生成器,根据随机变量生成对抗样本;

利用生成对抗网络中的第一判别器,对电子签名数据和对抗样本进行判别,输出判别数据;

根据判别数据,确定生成对抗网络的损失函数;

根据损失函数更新生成对抗网络的网络参数,直至损失函数小于预设值,得到第一签名识别模型。

作为优选,基于签名用户在每次签名场景中的待识别签名数据,对第一签名识别模型进行训练,得到训练完成的第二签名识别模型,包括:

利用第一签名识别模型,对待识别签名数据进行识别;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东莞理工学院,未经东莞理工学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202210983964.7/2.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top