[发明专利]利用磁场的微波增强型CVD系统和方法无效

专利信息
申请号: 94106741.6 申请日: 1986-10-14
公开(公告)号: CN1053230C 公开(公告)日: 2000-06-07
发明(设计)人: 山崎舜平 申请(专利权)人: 株式会社半导体能源研究所
主分类号: C23C16/50 分类号: C23C16/50;H01J37/32
代理公司: 中国专利代理(香港)有限公司 代理人: 萧掬昌,张志醒
地址: 日本神*** 国省代码: 暂无信息
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 利用 磁场 微波 增强 cvd 系统 方法
【说明书】:

发明涉及利用磁场的微波增强化学气相淀积(CVD)系统,更准确地说,它涉及电子回旋共振(ECR)化学气相淀积(CVD)系统。

在薄膜生成技术领域中,有已知的光增强化学气相淀积法,它比一般的CVD,(例如热力CVD和等离子体增强CVD)优越,因为它能在不损害将在其上生成薄膜的半导体表面的较低温度下实现薄膜的淀积。光增强CVD还具有一种所谓“表面迁移”的优点。即,淀积层的原子或分子,在被淀积在衬底表面之后保存它们的激活能,正由于这种激活能,使这些原子或分子运动而也能在未进行淀积的那部分衬底表面上形成薄膜;从而创立一种用CVD在凹凸不平的衬底表面上产生改进的分步复盖涂层的生成法。

然而,光增强CVD的薄膜生成速度离商业利益考虑所需的高速还差很远。(现已提出需将淀积速度提高几十倍)。

另一方面,已知一种利用借助于高频或直流电源使生产气体成为等离子体的辉光放电的等离子体CVD。这种技术的优点是能在比较低的温度下淀积。尤其是,当淀积非晶硅薄层时,为了中和薄层上的复合中心而同时投入氢气或囟素,以致容易获得具有改良特性的引线端或p-n结。这种等离子体CVD还足以适应快速淀积的要求。

此外,已经知道一种利用电子回旋共振(ECR)的CVD,按照这种技术,能够以10埃/秒至100埃/秒的速度淀积成具有5000埃至10微米厚度的厚膜。然而,反应气体平行于衬底的表面流动使得这种技术不可能在凹处,(例如在沟槽中)生成薄膜。除此之处,使氩原子以2.47千兆赫的频率谐振,这需要8 57高斯的强磁场,使空心线圈非常庞大。结果,由于可用于排出气体的空间受限制,甚至可能牺性在一个3英寸圆片上的10%厚度起伏的规范。

因此,本发明的目的是提供一种具有高的淀积速度而不损害淀积层的特征性能的改进的化学气相淀积系统和方法。

图1是表示本发明的第一实施例的局部剖面的侧视图。

图2是表示本发明的第二实施例的局部剖面的侧视图。

图3是表示本发明的第三实施例的局部剖面的侧视图。

根据本发明,主要通过回旋共振来激励反应气体。受激气体散布在反应空间中,在反应空间中,生产气体发生化学反应以进行薄膜的淀积。本发明取ECR CVD和光增强或辉光放电CVD两者的优点;ECR CVD在高淀积速度方面占优势,而辉光放电和光增强CVD在淀积薄膜的均匀性方面占优势。例如,当用辉光放电和光增强CVD淀积非晶硅薄膜时,其淀积速度分别是1埃/分和0.1埃/分。

将辉光放电CVD和光增强CVD与电子回旋共振(ECR)CVD结合在一起使用。这种结合使得在不损害薄膜均匀性的情况下有可能达到非常高的淀积速度。在淀积非晶硅薄膜的情况下,当与光增强CVD相配合时,其淀积速度是5埃/分至20埃/分;当与辉光放电CVD配合时,其淀积速度是20埃/分至100埃/分。

在最佳实施例中,用甚至在反应或分解之后都不能产生固态物质的惰性气体或非生产气体来实现回旋共振。通常用氩气作为惰性气体。但是,也可以用氦气,氖气或氪气。氧化物气体,例如氧气、氧化氮(N2O、NO、NO2)、氧化碳(CO、CO2)、水(H2O)或氮化物气体例如氮气、氨、联氨(N2H4)、氟化氮(NF3N2F6)或它们经控制气体或氢气稀释后的混合物,可以作为非生产气体。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于株式会社半导体能源研究所,未经株式会社半导体能源研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/94106741.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top