[发明专利]一种识别水文时间序列非线性趋势的方法有效
申请号: | 201510518852.4 | 申请日: | 2015-08-21 |
公开(公告)号: | CN105069309B | 公开(公告)日: | 2017-10-24 |
发明(设计)人: | 桑燕芳;刘昌明 | 申请(专利权)人: | 中国科学院地理科学与资源研究所 |
主分类号: | G06F19/00 | 分类号: | G06F19/00 |
代理公司: | 江苏圣典律师事务所32237 | 代理人: | 贺翔 |
地址: | 100101 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种识别水文时间序列非线性趋势的方法,包括根据序列长度计算最大小波分解水平,确定具体的离散小波变换方法;得到不同分解水平上对应的子序列;计算各子序列的小波能量密度值,得到待分析水文时间序列的小波能量密度函数;利用离散小波变换方法对白噪声序列进行分解得到子序列;将各白噪声序列小波能量密度函数的均值作为标准小波能量密度函数,得到标准小波能量密度函数的置信区间;对比最大时间尺度上待分析水文序列子序列的小波能量密度值与标准小波能量密度函数置信区间的位置关系。本发明解决了小波分析方法在水文时间序列趋势识别方面缺乏可靠的水文物理基础,也无法有效估计水文序列非线性趋势的显著性和不确定性的问题。 | ||
搜索关键词: | 一种 识别 水文 时间 序列 非线性 趋势 方法 | ||
【主权项】:
一种识别水文时间序列非线性趋势的方法,其特征在于,包括步骤如下:1)检查待分析水文序列数据的一致性和可靠性,选择合理的小波函数与边界点处理方法,根据序列长度计算最大小波分解水平,确定具体的离散小波变换方法;2)应用所确定的离散小波变换方法对水文时间序列进行分解,得到不同分解水平上对应的子序列,序列f(t)的分解结果记为:f(t)=Σi=1Nfi(t)+TN]]>其中,N表示最大小波分解水平,fi(t)表示由高频小波系数重构得到的第i个子序列,TN是最大分解水平上由低频小波系数重构得到的子序列,对应着序列趋势项;3)计算各子序列的小波能量密度值,得到待分析水文时间序列的小波能量密度函数:S(i)=1nΣt=1n(fi(t))2]]>其中,S(i)表示分解水平i上子序列fi(t)的小波能量密度值,n表示序列长度;4)利用Monte‑Carlo方法生成与待分析水文序列相同长度的白噪声序列,利用离散小波变换方法对白噪声序列进行分解得到子序列,并计算对应的小波能量密度函数;5)重复上述步骤4),生成大量白噪声序列并分别计算其小波能量密度函数,直至白噪声序列小波能量密度函数的统计特性稳定;6)将各白噪声序列小波能量密度函数的均值作为标准小波能量密度函数;通过计算各分解水平上白噪声序列小波能量密度值的95%置信区间,得到标准小波能量密度函数的置信区间;7)对比最大时间尺度上待分析水文序列子序列TN的小波能量密度值与标准小波能量密度函数置信区间的位置关系;若位于置信区间外,则表明该序列的非线性趋势在统计意义上显著,若位于置信区间内,则认为该序列的非线性趋势在统计意义上不显著。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院地理科学与资源研究所,未经中国科学院地理科学与资源研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201510518852.4/,转载请声明来源钻瓜专利网。
- 上一篇:一种轨枕间振动旋挖快速排石机
- 下一篇:靶向中枢神经系统的纳米药物载体
- 同类专利
- 专利分类
G06 计算;推算;计数
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用