[发明专利]基于PCA重建误差的齿轮参数贡献度分析方法有效

专利信息
申请号: 201710599975.4 申请日: 2017-07-21
公开(公告)号: CN107392248B 公开(公告)日: 2020-04-24
发明(设计)人: 利节;龚为伦;刘松;姜艳军;孙宇;陈瑶;陈国荣 申请(专利权)人: 重庆青山工业有限责任公司;重庆科技学院
主分类号: G06K9/62 分类号: G06K9/62
代理公司: 成都时誉知识产权代理事务所(普通合伙) 51250 代理人: 陈千
地址: 40277*** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种基于PCA重建误差的齿轮参数贡献度分析方法,其特征在于按照以下步骤进行:S1:输入n组数据,每一组数据包含m个特征值,从而构成n×m维的样本矩阵X;S2:根据样本矩阵X的协方差矩阵得到其特征向量U的初始值;S3:建立“误差和最小”目标函数模型;S4:根据其目标函数最小值时的特征向量U,按照其对应特征值大小从上到下按行排列成矩阵,取前h行,对应的参数即为贡献度最大的参数,h<m。其效果是:通过对传统PCA算法进行改进,引入误差和最小目标函数模型,将传统PCA算法得到的特征向量仅仅作为初始值,通过反复迭代优化,最终得到误差和最小目标函数最优状态的特征向量,通过对比发现,改进后的算法相对于传统PCA算法而言,其精度更高。
搜索关键词: 基于 pca 重建 误差 齿轮 参数 贡献 分析 方法
【主权项】:
一种基于PCA重建误差的齿轮参数贡献度分析方法,其特征在于按照以下步骤进行:S1:输入n组数据,每一组数据包含m个特征值,从而构成n×m维的样本矩阵X;S2:根据样本矩阵X的协方差矩阵得到其特征向量U的初始值;S3:建立“误差和最小”目标函数模型:并求其目标函数最小值,其中xi为样本矩阵X中第i个样本向量,γi表示第i个样本的权重且UUT=Ik,Ik为k维的单位矩阵,k≤m,α为正则化参数,SF为齿轮的弯曲安全系数,SH为齿轮的接触安全系数;S4:根据其目标函数最小值时的特征向量U,按照其对应特征值大小从上到下按行排列成矩阵,取前h行,对应的参数即为贡献度最大的参数,h<m。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆青山工业有限责任公司;重庆科技学院,未经重庆青山工业有限责任公司;重庆科技学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710599975.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top