[发明专利]克雷洛夫子空间加速求解燃耗方程的数值计算方法有效
申请号: | 201810383630.X | 申请日: | 2018-04-26 |
公开(公告)号: | CN108664714B | 公开(公告)日: | 2022-03-29 |
发明(设计)人: | 蔡杰进;唐智洪;李学仲 | 申请(专利权)人: | 华南理工大学 |
主分类号: | G16C20/20 | 分类号: | G16C20/20;G06F30/25;G06F111/10 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 李斌 |
地址: | 510640 广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种克雷洛夫子空间加速求解燃耗方程的数值计算方法,在采用有理展开的矩阵指数法的基础上,通过耦合新型的克雷洛夫子空间法—广义最小残差法,在保证一定的精度要求的前提上,提高了燃耗求解速度。主要是将一个n维的燃耗矩阵和初始核素浓度投影到一个m维子空间上,然后在这个子空间中寻找最优解。由于子空间的维度m比燃耗矩阵自身的维度n小很多,所以在求解的时候计算量大大减少,计算速度因此得到较大的提升。 | ||
搜索关键词: | 洛夫 空间 加速 求解 燃耗 方程 数值 计算方法 | ||
【主权项】:
1.克雷洛夫子空间加速求解燃耗方程的数值计算方法,其特征在于,包括:S1、矩阵指数有理展开:指数函数在一定的区间内可以用有理展开的方法进行近似计算,其形式为:这里v是有理展开式的分子分母的阶数;采用部分分式写法可以改写成:将其运用在燃耗计算上,可化成:式中:n0为初始核素组成向量;v为有理展开式的阶数;ξj为有理展开式中的极点;τj为有理展开式中各极点对应的留数;τ0为一个固定常数;A为燃耗矩阵;I为单位矩阵;S2、利用克雷洛夫子空间法—广义残差法加速:用广义残差法对公式(1)进行加速求解,其流程如下:S2‑1输入一个N阶的燃耗矩阵A,一个N阶的单位矩阵I,一个初始核素组成向量n0,一个时间步长t;任意选取一个初始迭代值x0并且计算B=tA‑ξjI和r0=n0‑Bx0;S2‑2设置v1=r0/||r0||2,β=||n0||2;S2‑3循环:For j=1,2,…,m,…,hi,j=(Bvj,vi),i=1,2,…,j,其中(Bvj,vi)代表求其内积;在上面的每一次循环中都做残差计算:建立汉斯博格矩阵:解最小二乘法问题:建立相应的:yj和||rj||2=||Vj(βe1‑Hjyj)||2,当残差||rj||2小于设定阈值时,退出循环;S2‑4计算获得单个解:xm=x0+VmymS2‑5把v个线性系统的解组合计算,可以得到最终核素组成向量n(t):
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810383630.X/,转载请声明来源钻瓜专利网。