[发明专利]遗传算法RBF神经网络在涡流传感器非线性补偿中的应用在审
申请号: | 201810780496.7 | 申请日: | 2018-07-17 |
公开(公告)号: | CN109102068A | 公开(公告)日: | 2018-12-28 |
发明(设计)人: | 俞阿龙;戴金桥;孙红兵 | 申请(专利权)人: | 淮阴师范学院 |
主分类号: | G06N3/04 | 分类号: | G06N3/04 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 223300 江苏省淮安*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 遗传算法RBF神经网络在涡流传感器非线性补偿中的应用,它涉及一种涡流传感器技术领域。用RBF神经网络建立涡流传感器非线性补偿模型,称为RBF神经网络逆模型,设涡流传感器的输入为δ,涡流传感器输出频率f,f=g(δ)为非线性关系,在涡流传感器后串联一个补偿环节,使y=g1(f)=kδ,那么就实现了涡流传感器的非线性补偿,当k=1时,y=δ=g1(f)称为涡流传感器的逆模型,将涡流传感器输出频率f作为RBF神经网络的输入训练样本。采用上述技术方案后,本发明有益效果为:具有很强的泛化能力和有高的精度,能同时优化网络结构和参数,具有全局寻优能力,补偿精度高,网络训练速度快、能实现在线软补偿。 | ||
搜索关键词: | 涡流传感器 非线性补偿 输出频率 逆模型 应用遗传算法 非线性关系 补偿环节 网络结构 网络训练 训练样本 遗传算法 软补偿 寻优 串联 全局 应用 优化 | ||
【主权项】:
1.遗传算法RBF神经网络在涡流传感器非线性补偿中的应用,其特征在于它包含如下步骤:步骤1、用RBF神经网络建立涡流传感器非线性补偿模型,称为RBF神经网络逆模型,设涡流传感器的输入为δ,涡流传感器输出频率f,f=g(δ)为非线性关系,在涡流传感器后串联一个补偿环节,使y=g1(f)=kδ,那么就实现了涡流传感器的非线性补偿,当k=1时,y=δ=g1(f)称为涡流传感器的逆模型,将涡流传感器输出频率f作为RBF神经网络的输入训练样本,与涡流传感器输入对应的线性化位移(kδ)作为RBF神经网络的输出训练样本;步骤2、运用遗传算法优化RBF神经网络的结构和参数,将RBF神经网络的拓扑结构、连接权重、阈值、隐节点中心参数和宽度参数看成一个整体,编码为染色体,选择适当规模的种群,通过遗传迭代逐渐优化,求得网络参数和隐节点数同时优化的结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于淮阴师范学院,未经淮阴师范学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810780496.7/,转载请声明来源钻瓜专利网。