[发明专利]一种基于小波包分解和深度学习的刀具磨损实时预测方法有效

专利信息
申请号: 202010584310.8 申请日: 2020-06-23
公开(公告)号: CN111832432B 公开(公告)日: 2022-03-18
发明(设计)人: 史铁林;段暕;轩建平;詹小斌;江苏;景锐真 申请(专利权)人: 华中科技大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62;G05B19/4065;G06N3/04;G06N3/08
代理公司: 华中科技大学专利中心 42201 代理人: 孔娜;李智
地址: 430074 湖北*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明属于刀具状态监测相关技术领域,其公开了基于小波包分解和深度学习的刀具磨损实时预测方法,包括以下步骤:(1)同步采集工件加工过程中的相关传感器信号,并选取其中稳定的信号段作为待分析的信号段,同时扩充待分析信号样本以增加样本量;对待分析信号进行小波包分解变换,以得到多个小波包系数二维矩阵;(2)小波包系数二维矩阵对应都作为一个特征提取CNN模型块的输入,并将每个特征提取CNN模型块输出的一维特征矩阵拼接成更长的一维矩阵,进而进行特征融合并建立两层全连接网络,由此得到卷积神经网络模型;(3)将待分析的信号数据输入到所述卷积神经网络模型中,以实时预测刀具的磨损量。本发明能降低成本,且适用性强。
搜索关键词: 一种 基于 波包 分解 深度 学习 刀具 磨损 实时 预测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010584310.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top