[发明专利]用于求解未知外部驱动力作用下的有界振动杆位移分布的耦合物理信息神经网络在审
申请号: | 202211555055.X | 申请日: | 2022-12-06 |
公开(公告)号: | CN116050247A | 公开(公告)日: | 2023-05-02 |
发明(设计)人: | 孙希明;王嫒娜;秦攀 | 申请(专利权)人: | 大连理工大学 |
主分类号: | G06F30/27 | 分类号: | G06F30/27;G06F17/13;G06N3/04;G06N3/08;G06F119/14 |
代理公司: | 辽宁鸿文知识产权代理有限公司 21102 | 代理人: | 许明章;王海波 |
地址: | 116024 辽*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种用于求解未知外部驱动力作用下的有界振动杆位移分布的耦合物理信息神经网络,提出一种新的PINN,称为C‑PINN,用于求解有界振动杆在具有较少或甚至没有任何先验信息的外部驱动力作用下的位移分布。包含两个神经网络,NetU和NetG。NetU逼近满足所研究有界振动杆的位移分布;NetG用于正则化NetU中的u以满足NetU逼近的位移分布。将两个网络集成为一个数据‑物理混合的损失函数中。此外,利用所提出的分层训练策略对该损失函数进行优化,实现两个网络的耦合。最后,验证C‑PINN在求解有界振动杆在外部驱动力作用时位移分布的性能。本发明的C‑PINN适用于解决具有外部驱动作用下并与时间空间具有依赖关系的多类动态系统,即包括求解在外部热源作用下的温度分布,电磁波在外源影响下的电磁分布等。 | ||
搜索关键词: | 用于 求解 未知 外部 驱动力 作用 振动 位移 分布 耦合 物理 信息 神经网络 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于大连理工大学,未经大连理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202211555055.X/,转载请声明来源钻瓜专利网。